त्रिकोणमिति
अभ्यास 8.2 Part 1
प्रश्न 1: निम्नलिखित के मान निकालिए:
(i) sin 60o cos 30o + sin 30o cos 60o
उत्तर:
`sin60°cos30°+sin30°cos60°`
`=sqrt3/2xxsqrt3/2+1/2xx1/2`
`=3/4+1/4=1`
(ii) 2 tan2 45o + cos2 30o - sin2 60o
उत्तर:
`tan^2\45°+cos^2\30°-sin^2\60°`
`=2xx1^2+(sqrt3/2)^2-(sqrt3/2)^2`
`=2+0=2`
(iii) `(cos 45°)/(sec 30°+text(cosec) 30°)`
उत्तर:
`(cos 45°)/(sec 30°+text(cosec) 30°)`
`=(1/sqrt2)/(2/sqrt3+2)=(1/sqrt2)/((2+2sqrt3)/(sqrt3))`
`=1/sqrt2xx(sqrt3)/(2(sqrt3+1))`
`=(sqrt3)/(2sqrt2(sqrt3+1))`
`=(sqrt3)/(2sqrt2(sqrt3+1))xx(2sqrt2(sqrt3-1))/ (2sqrt2(sqrt3+1))`
`=(sqrt3xx2sqrt2(sqrt3-1))/(8(3-1))`
`=(6sqrt2-2sqrt6)/(16)`
`=(2(3sqrt2-sqrt6))/(16)`
`=(3sqrt2-sqrt6)/(8)`
(iv) `(sin30°+tan45°-text(cosec) 60°)/(Sec30°+cos60°+cot45°)`
उत्तर:
`(sin30°+tan45°-text(cosec) 60°)/(Sec30°+cos60°+cot45°)`
`=(1/2+1-2/sqrt3)/(2/sqrt2+1/2+1)`
`=(3/2-2/sqrt3)/(3/2+2/sqrt3)`
`=(3/2-2/sqrt3)/(3/2+2/sqrt3)xx(3/2-2/sqrt3)/(3/2-2/sqrt3)`
`=(9/4+4/3-2xx3/2xx2/sqrt3)/(9/4-4/3)`
`=((27+16)/(12)-2sqrt3)/((27-16)/(12))`
`=(43-24sqrt3)/(11)`
(v) `(5cos^2\60°+4sec^2\30°-tan^2\45°)/(sin^2\30°+cos^2\30°)`
उत्तर:
`(5cos^2\60°+4sec^2\30°-tan^2\45°)/(sin^2\30°+cos^2\30°)`
`=(5xx(1/2)^2+4xx(2/sqrt3)^2-1^2)/((1/2)^2+(sqrt3/2)^2)`
`=(5/4+16/3-1)/(1/4+3/4)`
`=(5/4+16/3-1)/(1)`
`=(15+64-12)/(12)=(67)/12`